Saturday, January 9, 2010

payback period was found to be between 17 and 25 months, whereas the CO2 payback was betwee http://journals.pepublishing.com/content/724614867721n2l2/

Authors
R K Rankine1, J P Chick1, G P Harrison1

1School of Engineering and Electronics, University of Edinburgh, Edinburgh, UK
Abstract

Microgeneration is being promoted as a means of lowering carbon dioxide (CO2) emissions by replacing electricity from the grid with production from small domestic generators. One concern over this drive is that the use of smaller plant could lead to the loss of economies of scale. Partly, this relates to cost but also in terms of energy consumed and CO2 emitted over the life cycle of the microgenerator.

Here, an analysis is presented of a life-cycle audit of the energy use and CO2 emissions for the ‘SWIFT’, a 1.5 kW rooftop-mounted, grid-connected wind turbine. The analysis shows that per kilowatt-hour of electricity generated by the turbine, the energy intensity and CO2 emissions are comparable with larger wind turbines and significantly lower than fossil-fuelled generation. With energy and carbon intensities sensitive to assumed levels of production, assessments were carried out for an annual production range of 1000-4000 kWh, representing capacity factors of 8-31 per cent. For the manufacturer's estimated production of 2000 to 3000 kWh and, giving credit for component recycling, the energy payback period was found to be between 17 and 25 months, whereas the CO2 payback was between 13 and 20 months. Across the full production range, the energy and carbon payback periods were 13-50 months and 10-39 months, respectively.

A key outcome of the study is to inform the manufacturer of the opportunities for improving the energy and carbon intensities of the turbine. A simple example is presented showing the impact of replacing one of the larger aluminium components with alternative materials.

Keywords
audit, carbon emissions, energy intensity, life-cycle analysis, microgeneration, wind turbines
Fulltext Preview (Small, Large)
Image of the first page of the fulltext
References

Department of Trade and Industry.The renewables obligation order 2002, 2002 (Stationary Office, London).

Bialek, J. W. Attempts to introduce locational marginal loss charging in the UK. 6th International Conference Advances in Power System Control, Operation and Management, vol. 1, Hong Kong, 11-14 November 2003, pp. 108-116.

Jamasb, T., Nuehoff, K., Newberry, D., and Pollitt, M.Long-term framework for electricity distribution access charges, March 2005 (Office of Gas and Electricity Markets, London).

International Federation of Institutes for Advanced Studies. Workshop report energy analysis and economics. Res. Energy, 1978, 1, 151-204.
[CrossRef]

McCulloch, M., Raynolds, M., and Laurie, M.Life cycle value assessment of a wind turbine, 2000 (Pembina Institute for Appropriable Development, Alberta, Canada), available from www.pembina.org/pdf/publications/windlcva.pdf.

Schleisner, L. Life cycle assessment of a wind farm and related externalities. Renew. Energy, 2000, 20, 279-288.
[CrossRef]

Elsam Engineering A/S.Life cycle assessment of offshore and onshore sited wind power plants based on Vestas V80-2.0MW turbines, 2004 (Vestas Wind Power Systems A/S, Randers, Denmark), available from www.vestas. com.

Society of Environmental Toxicology and Chemistry.A conceptual framework for life-cycle impact assessment, 1992, Workshop report, Sandestin, Florida, USA (Society of Environmental Toxicology and Chemistry, Florida).

Hunkler, D., and Rebitzer, G. The future of life cycle assessment. Int. J. Life Cycle Anal., 2005, 10(5), 305-308.

Ciambrone, D. F.Environmental life cycle analysis, 1997 (CRC Press, New York).

Renewable Devices Ltd.SWIFT rooftop wind energy system product data sheet, 2006 (Renewable Devices, Edinburgh), available from www.renewabledevices. com/swift.

Department of Trade and Industry.UK energy in brief, 2005 (DTI, London).

Dutton, A. G., Halliday, J. A., and Blanch, M. J.The feasibility of building-mounted/integrated wind turbines (BUWTs): Achieving their potential for carbon emission reductions. Final Report, 4 May 2005, p. 109.

Mertens, S. The energy yield of roof mounted wind turbines. Wind Eng., 2003, 27(6), 507-518.
[CrossRef]

Manwell, J. F., McGowan, J. G., and Rogers, A. L.Wind energy explained: theory, design and application, 2002 (J. Wiley & Sons, Chichester).

Harrison, G. P., and Wallace, A. R. Climate sensitivity of marine energy. Renew. Energy, 2005, 30(12), 1801-1817.
[CrossRef]

Department of Trade and Industry.Fuel mix disclosure data table, current UK fuel mix and emissions, 2005 (DTI, London), available from www.dti.gov.uk/energy/consumers/fuel_mix/index.shtml.

International Standards Organisation.ISO 14040: 1997 environmental management, life cycle assessment, principles and framework, 1997 (ISO, Geneva).

International Aluminium Institute.Life cycle inventory of the worldwide aluminium industry with regard to energy consumption and emissions of greenhouse gases, March 2003 (IAI, London), available from www.world-aluminium.org.

International Iron and Steel Institute.LCI data for steel products, 2005 (IISI, Brussels), available from www.IISI.org.

International Iron and Steel Forum.World steel life cycle inventory methodology report (1999/2000), 2002 (IISF, Brussels), available from www.worldstain less.org.

European Copper Institute.Life cycle analysis for copper products, June 2005 (Deutches Kupferinstitut, Dusseldorf, Germany), available from www.kupferinstitut.de/lifecycle/.

Association of Plastics Manufacturers in Europe. Eco-profiles of the European plastics industry - liquid epoxy resins, 2005 (PlasticsEurope, Brussels), available from www.plasticseurope.org.

Rydh, C. J. and Sun, M. Life cycle inventory data for materials grouped according to environmental and material properties. J. Clean. Prod., 2005, 13, 1258-1268.
[CrossRef]

European Aluminium Association.Aluminium recycling in LCA, 2005 (EEA, Brussels), available from www.eaa.net.

Dahmus, J. and Gutowski, G.An environmental analysis of machining. ASME International Mechanical Engineering Congress and RD&D Expo, IMechE2004, Anaheim, CA, USA, 13-19 November 2004.

Ashby, M.Materials selection in mechanical design, 2nd edition, 1999 (Butterworth-Heinemann, Oxford, UK).

Suzuki, T. and Takahashi, J. Prediction of energy intensity of carbon fiber reinforced plastics for mass-produced passenger cars. 9th Japan International SAMPE Symposium JISSE-9, Tokyo, Japan, 29 November-2 December, 2005.

Takayoshi, U., Shiino, T., and Ouishi, H. Evaluation of electronic components in life cycle assessment. J. Mater. Cycles Waste Manag., 1999, 1, 25-32.
[CrossRef]

HM Revenues and Customs.Foreign exchange rates: Japan, 2006 (HMRC, London), available from www.hmrc.gov.uk/exrate/japan.htm.

Automobile Association.AA 2003 road atlas, 2002 (Automobile Association, London).

DEFRA.Guidelines for companies reporting on greenhouse gas emissions, 2001 (Department for Environment and Rural Affairs, London).

Vehicle Certification Agency.Vehicle data for ford transit, 2005 (VCA, Bristol), available from www.vcacarfueldata.org.uk.

Khron, S.The energy balance of modern wind turbines, Wind Power Note, 1997 (Danish Wind Energy Association, Denmark).

Fujii, H., Nagaiwa, T., Kusuno, H., and Malm, S. How to quantify the environmental profile of stainless steel. Society of Environmental Toxicology and Chemistry North America 26th Annual Meeting, November 2005 (SETAC, Pensacola, Florida, USA).

Lenzen, M. and Munksgaard, J. Energy and CO2 life cycle analysis of wind turbines-reviews and applications. Renew. Energy, 2002, 26, 339-362.
[CrossRef]

Voorspools, K. R., Brouwers, E. A., and D'haeseleer, W. D. Energy content and indirect greenhouse gas emissions embedded in ‘emission-free’ power plants: results for the low countries. Appl. Energy, 2000, 67(3), 307-330.
[CrossRef]

Meier, P. J., Wilson, P. P. H., Kulcinski, G. L., and Denholm, P. L. US electric industry response to carbon constraint: a life-cycle assessment of supply side alternatives. Energy Policy, 2005, 33, 1099-1108.
[CrossRef]

Tahara, K., Kojima, T., and Inaba. A. Evaluation of CO2 payback time of power plants by LCA. Energy Conserv. Manage., 1997, 38, 615-620.
[CrossRef]

AEA Technology. Environmental product declaration of electricity from torness nuclear power station - summary of results, May 2005 (British Energy, London).

No comments: